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Multi-curvature micropatterns unveil distinct
calcium and mitochondrial dynamics in neuronal
networks†

Hammad Khan, a Connor Becka and Anja Kunze *ab

Tangential curvatures are a key geometric feature of tissue folds in the human cerebral cortex. In the brain,

these smoother and firmer bends are called gyri and sulci and form distinctive curved tissue patterns

imposing a mechanical stimulus on neuronal networks. This stimulus is hypothesized to be essential for

proper brain cell function but lacks in most standard neuronal cell assays. A variety of soft lithographic

micropatterning techniques can be used to integrate round geometries in cell assays. Most microfabricated

patterns, however, focus only on a small set of defined curvatures. In contrast, curvatures in the brain span

a wide physical range, leaving it unknown which precise role distinct curvatures may play on neuronal cell

signaling. Here we report a hydrogel-based multi-curvature design consisting of over twenty bands of

distinct parallel curvature ranges to precisely engineer neuronal networks' growth and signaling under

patterns of arcs. Monitoring calcium and mitochondrial dynamics in primary rodent neurons grown over

two weeks in the multi-curvature patterns, we found that static calcium signaling was locally attenuated

under higher curvatures (k > 0.01 μm−1). In contrast, to randomize growth, transient calcium signaling

showed higher synchronicity when neurons formed networks in confined multi-curvature patterns.

Additionally, we found that mitochondria showed lower motility under high curvatures (k > 0.01 μm−1) than

under lower curvatures (k < 0.01 μm−1). Our results demonstrate how sensitive neuronal cell function may

be linked and controlled through specific curved geometric features. Furthermore, the hydrogel-based

multi-curvature design possesses high compatibility with various surfaces, allowing a flexible integration of

geometric features into next-generation neuro devices, cell assays, tissue engineering, and implants.

Introduction

The architecture of the human cerebral cortex displays a folded
landscape having evolved and expanded tangentially across a
spherical surface to optimize brain surface area within the
human skull.1–3 This tissue folding process starts during the
fetal developmental stage and plays a crucial role as the brain
matures and creates new neuronal connections.4–8 Aside from
the deeply folded landscape, abnormal cortical folding has been
associated with neurological, cognitive, and behavioral disorders
such as epilepsy,9 autism,10,11 and schizophrenia.12–14 Current
computational-based evidence supports the hypothesis that
forces get generated within cortical folds and impact cellular
morphology and migration during cortical development.15

However, how the cortical folds can result in bent neurite

network growth and alter neuronal cell function remains poorly
understood. From histological images1,15 two main curvature
regions can be identified based on smaller (0.001 μm−1 < k <

0.008 μm−1) and larger bends (0.01 μm−1 < k < 0.05 μm−1,
Fig. 1a). Various surface geometry modifying techniques such as
microchannels,16 micropillars,17,18 microfibers,19,20 patterned
substrate coatings,18,21–25 or hydrogels26–28 have been employed
to guide the growth and orientation of neuronal cells from the
peripheral and central nervous system.29 Characteristic bending
of neurite outgrowth based on curvatures has been explored by
Smeal et al. on microfiber filaments using dorsal root ganglions
(DRG),19,20 and by Roth et al. on poly-L-lysine (PLL) patterns
using mouse neurons.25 With microfiber filaments varying in
their curvatures from 0.004 μm−1 to 0.06 μm−1, Smeal et al.
found that the highest curvature filaments had the strongest
DRG neurite growth guidance effect. Roth et al. demonstrated
further that curvatures above 0.1 μm−1 inhibited neurite
outgrowth.25 Beyond neurite growth, a ring-shaped surface
pattern with curvature below 0.01 μm−1 has been used to
demonstrate connected evoked calcium activity in small-scale
neuronal networks grown from cortical neurons.23 Although all
these microenvironmental cues play an important role in
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neuronal outgrowth,29 how different curvature ranges drive
functional spontaneously occurring neuronal behavior is still
poorly understood. Hence, we designed a multi-curvature based
micropattern to investigate how different curvature ranges
influence spontaneously occurring transient calcium signaling
events and mitochondrial transport in primary cortical neurons.
Inspired by hydrogel soft-embossing methods,28,30 we fabricated
a range of curvatures (k = 0.003–0.2 μm−1) in a highly
parallelized manner. Using our multi-curvature patterns, we
studied the cellular response of rodent cortical neurons by
analyzing how neurons grow their networks, how calcium (Ca2+)
fluorometry changes, and how mitochondrial transport gets
impacted under distinct curvature ranges. Our results indicate
that distinct curvature ranges leave a unique fingerprint of
neuronal network behavior based on calcium signaling and
mitochondria dynamics.

Materials and methods
Design and fabrication of multi-curvature micropatterns for
neuronal cell assay using a hydrogel substrate

In Fig. 1b and c, the materials, the assembly, and the design
of the multi-curvature micropatterns are shown. Through
varying the number, the width, and the gap between the
growth rings, six different designs were chosen (Fig. 1d,
growth ring = cells), leading into multi-curvatures ranging
from 0.003 μm−1 to 0.2 μm−1 (Fig. 1e). A photolithography
mask was designed using CleWin (PhoeniX, Netherlands) as a
negative pattern to fabricate the multi-curvature micropatterns.
KMPR 1050 (Microchem) was spin-coated (500 rpm for 10 s
ramp-up speed; 3000 rpm for 30 s; 1000 rpm, 10 s ramp down
speed) and soft-baked at 100 °C for 15 min to obtain a feature
height of 50 μm. The features were exposed (700 mJ cm−3) to
ultra-violet light using a contact aligner (Shipley SPR 1813) and

developed (SU-8 developer) for 3.7 min followed by a thorough
rinse with deionized (DI) water. Silicone elastomer base and
curing agent (Sylgard) were mixed using a 10 : 1 base/curing
agent ratio and poured onto the KMPR master wafer to cast
the PDMS stamp. The PDMS elastomer mixture was cured for
2 h at 60 °C for rapid crosslinking and gently peeled off from
the master and cut to size (Fig. 2a). For the fabrication of soft-
gel features, a mixture of 3% w/v type VII-A agarose (>250 mg
cm−2) was heated in a convection oven at 80 °C. We chose this
agarose concentration based on testing of agarose hydrogel
repellant properties (Fig. S1a and S1b†). The liquid agarose
solution was directly pipetted onto a Petri dish pre-coated with
poly-D-lysine (PDL). After pipetting, the PDMS stamp was
pressed firmly onto the agarose gel inspired by a previous
method.27,30 Contact was maintained for 5 min, followed by a
cooling period for 30 min before the PDMS stamp was
removed. Feature integrity of the multi-curvature patterns was
imaged using upright bright-field and inverted DIC-contrast
microscopy at each fabrication step (Fig. 2b). To measure the
swelling characteristic of agarose hydrogel, in situ imaging was
utilized by loading the agarose with fluorescent microparticles
(diameter: 15 μm, Bangs Lab). The position of the fluorescent
microparticles was then imaged in 10 min intervals for 48 h
(Fig. S2a†) for subsequent particle image velocimetry (PIV).
The image sequence was post-processed using the PIV module
in MATLAB (Fig. S2b†), resulting in particle displacement
maps over time (Fig. S2c–e†).

Cortical neuron cell culture

Rat embryonic brains (E18, BrainBits) were dissected following a
previously established protocol.31–33 Briefly, cortical tissues were
dissociated in 10% (v/v) papain (Carica papaya, Roche) in
Hibernate-E (BrainBits) at 37 °C for 15 min. Dissociated cortical

Fig. 1 Low-cost, multi-curvature micropatterning design for calcium-based neuronal network studies. a) In vivo representation of diverse arc
ranges occurring in the human cerebral cortex. Low curvatures (k < 0.008 μm−1) are determined by gyrus and sulcus structures. High curvatures (k
> 0.01 μm−1) are determined through bended neurite/axonal growth characteristics. b and c) Experimental design of micro-patterned multi-
curvature-based growth of primary cortical neurons (E18, rat model) on polystyrene substrates using hydrogel boundaries in b) exploded view, c)
top view. d) Six different multi-curvature micro patterns used in this study. Letters indicate cell growth width. S: small (10 μm), M: middle (20 μm),
L: large (50 μm). e) Side view of panel d shows radius and curvature parameters associated with the six different designed micropatterns in panel
d.
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neurons were centrifuged (6 min, 600 rpm, at room temperature)
and then seeded at a concentration of 250000 cells per ml per
device. Cortical neurons were incubated (95% air, 5% CO2, 37 °C)
in standard neuronal culture media (97% (v/v) Neurobasal Plus
Medium (Gibco), B-27 Plus Supplement with 2% (v/v) (Gibco),
and 1% (v/v) penicillin–streptomycin (Gibco)) and grown for over
two weeks (3 DIV, 9 DIV, 12 DIV, 15 DIV = days in vitro). The
growth of neurite networks was then quantified in each growth
ring using a mask during image-post processing (Fig. 2d and e).

Mitochondria and calcium labeling

Day 12–15 cortical neurons were incubated with red
mitochondria tracking dye (1.88 μM, MitoTracker Red CMXRos,
Invitrogen) mixed into standard media culture (0.02% v/v) and

incubated for 1 h. The neuronal culture was gently washed with
pre-warmed imaging media (98% (v/v) Neurobasal Plus without
phenol red, 2% (v/v) B-27 Supplement, Gibco) before imaging.
To achieve proper staining of the culture, the MitoTracker was
introduced first, imaged, and followed by Fluo-4 AM calcium
staining with gentle washing in-between. For calcium labeling,
Fluo-4 AM direct calcium assay kit (Invitrogen) was prepared
following the manufacturer's protocol with probenecid acid (10
mM). The final Fluo-4 AM mixture was added to neuronal
cultures in a 1 : 1 ratio with media and incubated for 1 h.

Live-cell imaging

Cortical neuron cultures were live imaged using an inverted
imaging system (Leica DMi8S) with white-light bright-field,

Fig. 2 Device design shows the robust fabrication of curvature features and embedded curved neurite outgrowth. (a) Schematic of
micropatterning process flow. The photoresist process takes place in the cleanroom and yields a modeling master. The process of
polydimethylsiloxane (PDMS) stamp formation is repeatable and done in a physical wet lab setting. The last process uses liquified agarose hydrogel
as a base layer onto which the PDMS microstructures get imprinted. This step yields the multi-curvature hydrogel patterns where neuronal cells
grow within the grooves. (b) Microscope images show the photoresist structure on the master, the microstructures after being cast into PDMS,
and the imprinted hydrogel microstructures. (c1 and c2) DIC images of day 12 cortical neurons forming circular networks in the multi-layered
curvatures. Distinct curved growth patterns depend on curvatures k1, k2, k3, and k4, where k1 is always the smallest curvature. (d) Image processing
mask used to extract curvature-dependent static and transient calcium activity within one circular network. (e) The diagram shows curvature-
dependent coverage of total ring growth area in the micropatterns, extracted from two patterns (n = 2, each) at 12 DIV. The covered growth area
decreases as curvature increases.
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phase-contrast, or differential interference contrast (DIC)
starting at day three in vitro (DIV). Spontaneous (activity-
independent) transient calcium signals were captured in live
cortical neuron cultures using a single-wavelength calcium
indicator Fluo-4 AM (see ESI† video file S1) due to its wide
dynamic range, easy to use, and wide range of comparable
studies in the field of calcium imaging.6,34–36 Live-cell
fluorescent calcium dynamics in Fluo-4 AM labeled neurons
were captured using the same microscope fluorescent
settings (Leica DMi8S, GFP filter, 20× air) with channel
exposure set to 250 ms. Transient fluorescent calcium signals
were recorded for 50 s at 2 fps (2 Hz). Separate static
fluorescent calcium signals were captured based on a single-
image setting. Live-cell imaging of fluorescently labeled
mitochondria was taken at 2 fps for 120 s using the same
microscope (Leica DMi8S, TxRed filter, 20× air).

Image processing and analysis

Static calcium profiling. Image processing of static
calcium profiles was done through ImageJ using a custom-
written semi-automated calcium profiling plugin (Fig. S4a
and b†). Intensity signals were projected to a radial line with
its origin in the micropattern's center. The radial line then
automatically scans the entire micropattern region clockwise,
and yields mean and SE intensity profiles. The projected
intensity profile (I) was then normalized based on the
number of cells (Ncell) in each ring and based on the average
intensity (Iavg) over the whole image (eqn (1) and (2), Fig.
S4d†). The curvature for each concentric circle (k) is the
inverse of its radius (r) starting from the center of the
micropattern (eqn (3)). The resulting normalized calcium
intensity (I*) is then used to compare differences in the
multi-curvature micropatterns based on different arcs in the
neuronal network (Fig. S4e†).

Icell ¼ I
Ncell

(1)

I* ¼ Icell
Iavg

(2)

k ¼ 1
r

(3)

Transient calcium fluorometry. The transient live-cell
calcium signaling data based on spontaneously active cell
bodies with neurites were analyzed using custom algorithms
in MATLAB inspired by Ikegaya et al.6,37 Exported microscope
videos were imported into MATLAB and treated as sequences
of images. The image sequence was then segmented into
regions of interest (ROIs) using an auto-detection algorithm.
Individual cell bodies were segmented into ROIs and indexed
with a number and a radius code corresponding to the center
of the multi-curvature micropattern. The ROIs were then
sorted into radius groups corresponding to distinct curvature
regions (Fig. S5a†). Mean fluorescent intensity for each ROI

was extracted over the time series, and a numerical derivative
was computed for each transient wave (ΔF/Δt) based on a
similar algorithm reported in Beck et al.31 Calcium events
based on increasing cytosolic calcium levels were denoted as
a spike for visualization where the numerical derivative
exceeded 2.5 times the standard deviation. The spike rate of
calcium events was then computed as the average number of
calcium increase events per second for each ROI (Fig. S5b†).

Synchronous calcium network identification. To quantify
synchronous events of calcium increase inspired by Ikegaya
et al.,37 we measured the overall signal synchronicity in the
cortical network through calculating a synchronicity index
(SI) from the raster plots showing increase in calcium events.
Spike raster plots were compared using the Sørensen–Dice
similarity coefficient.31 Unique comparisons (i.e., a 3-length
ROI index would follow as ROI1–ROI2, ROI1–ROI3, ROI2–ROI3)
was then linearized and run through the filter function (eqn
(4)) where Si is the Sørensen–Dice similarity coefficient at the
linear index i, and nmax is the total length of the linearized
list of spike events (Fig. S5c†).

SI ¼ 1
nmax

Xnmax

i¼1

Si > 0:25½ � where P½ � ¼ 1 if P is true;

0 if P is false;

�
(4)

Mitochondria tracking. We measured mitochondrial
dynamics through computing the average velocity (vavg), total
distance traveled (Ltotal) within a limited time frame, and
diffusion behavior based on mean square displacement
(MSD). Image sequences were imported into ImageJ for
photobleaching correction and background subtraction. A
rolling-ball parabola algorithm was used to correct video
stacks. Afterward, mitochondria dots were tracked using
ImageJ TrackMate (LOG detector, 1 μm blob diameter) and
exported as .xml files. All tracks were analyzed using custom
MATLAB scripts previously described.32 Briefly, the MATLAB
script excludes track data that were extracted for time frames
shorter than 36 s. It then generates star plots of all tracks,
computed the MSD (eqn (5)),38 Ltotal (eqn (6)),32 and vavg (eqn
(7)).32 Final data was binned for each multi-curvature region
within the micropatterns.

MSD ¼ 1
p − τ

Xp − τ
τ¼1

xiþ1

yiþ1

 !
−

xi
yi

� ������
�����
2

(5)

Ltotal ¼
Xp
i¼1

Li (6)

vavg ¼ 1
p

Xp
i¼1

Li
ti − ti − 1

(7)

Statistical analysis

All resulting computational data was subjected to a normality
test. If normal data distribution was rejected (p > 0.05), non-
parametrized statistical tests were used to assess significance.
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Spike rates of calcium events and synchronous calcium
network activity were compared across devices (L-I, L-II,
control) using the Mann–Whitney test and visualized based
on p > 0.05 (not significant) and p ≤ 0.05 (significant
difference). Agarose concentration distributions were tested
using appropriate one-way ANOVAs test routines (p < 0.01).

Results and discussion
Stable replication of multi-scale curvatures in hydrogel-based
micropatterns for neurite networks growth in vitro

Confined curvatures are a key feature of the cerebral
tissue resulting in small and large-curved neurite growth
in the human brain cortex (Fig. 1a). To replicate this
growth characteristic in neurite networks in vitro in a
reproducible and highly parallelizable way, we designed
six individual multi-ring patterns ranging from 280 μm
(the smallest outer diameter) to 600 μm (the largest outer
diameter, Fig. 1b–e). Within the six multi-ring patterns, a
set of two has identical growth widths of 10 μm, 20 μm,
and 50 μm denoted as S, M, L, respectively (Fig. 1d). The
six multi-ring patterns were assembled into four arrays
and imprinted in a 3% (w/v) agarose-based hydrogel layer
to generate 50 μm tall neurite growth barriers (Fig. S1†).
The agarose barriers are either 15 or 25 μm denoted as I
or II, respectively (Fig. 1d). The integrity of the agarose
hydrogel (swelling) was tested for 48 h in culture media
using fluorescent beads (Fig. S2†), and the stability of
agarose barriers was monitored over 12 days with neurite
network forming neurons (Fig. S3†). Throughout the
fabrication process (Fig. 2a and b), we found that agarose
maintained high batch consistency, similar to other
studies using soft-gel microstructures for patterned cell
growth.28,30,39 Seeded cortical neurons integrated into the
microchannels between the agarose barrier and grew in
circular patterns forming arced neurite networks over 12
DIV (Fig 2c1, c2 and S3b†). Lastly, we measured the total
growth coverage of seeded cells in the multi-curvature
patterns (Fig. 2d and e). Based on a percentage growth
area coverage (cells per ring area), we found that growth
coverage decreased with increasing curvature (k1 =
smallest, k4 = largest, Fig. 2e). The maximum growth did
not exceed 30% of the total area for any curvature values
(k > 0.004 μm−1). These findings remained consistent
within two individual designs with different agarose
barriers (width = 20 μm, 25 μm) and identical cell growth
patterns (width = 50 μm) and further confirm the growth
inhibition effect under large curvatures (k > 0.1 μm−1)
shown by Roth et al.25

In summary, the micropatterned hydrogel substrates allow
primary cortical neurons to grow neurite networks in multi-
curvature micropatterns ranging from 0.003 μm−1 to 0.2 μm−1

in a stable and reproducible manner and provides the
foundation for a parallelized analysis of neuronal cell
signaling and intracellular transport dynamics.

Static Ca2+ levels change under distinct multi-curvature
patterns

To investigate spatial differences in static calcium levels
relying on unique micro-curvature patterns, we extracted
static normalized fluorescent calcium profiles from Fluo-4
AM stained mature grown neurite networks (rat, E18, cortical
neurons, 9–12 DIV). We measured the curvature effects in
relation to static calcium intensity levels with all circular
variation types (Fig. 3a1–a3) using semi-coded scripts
(Fig. 3b1–b4 and S4†). When comparing static calcium
profiles between unpatterned neuronal network growth and
multi-curvature-based micropatterns, we observed distinct
shifts in calcium amplitude depending on the curvature
region (Fig. 3c1–c3). As expected, the unpatterned network
reveals an almost uniform calcium distribution (Fig. 3c2).
However, the micropatterned network shows spatial
differences in the amplitude of the calcium profile depending
on the curvature (Fig. 3c3). This trend is further supported by
comparing normalized calcium fluorescent profiles between
the six different multi-ring patterns (Fig. 3d1–d3).
Interestingly, three major static calcium profiles seem to
emerge from the multi-curvature patterns. If the growth ring
width, where the neuronal cells adhere, is below 50 μm, the
bent neurites seem to either show large intensity amplitudes
above the average intensity for very large curvatures (k > 0.1
μm−1) or attenuated amplitudes within 0.01 μm−1 to 0.05
μm−1 (Fig. 3d1, d2, e1 and e2), independent of the smaller
barrier widths (S&M-I: 15 μm versus S&M-II: 25 μm). If the
growth ring width is above 50 μm, neurite networks still grow
circularly; however, the static calcium profiles appear to be as
uniformly distributed as for unpatterned neurite networks
(Fig. 3d3 and e3). These observations may be explained
through metabolic signaling between the multi-curvature
rings, which can still occur through the agarose barriers due
to the porosity of agarose.26,40 Furthermore, the higher
calcium intensity levels under larger curvatures (k > 0.1
μm−1) may indicate the activation of an environmental cue
due to mechanical forces, which have been linked in previous
studies to cause a Ca2+ influx in cortical neurons.33,41–44 In
summary, our results suggest that varying degrees of
curvatures may affect static calcium profiles distinctively in
neuronal tissues.

Ca2+ event rates show sensitivity to multi-scaled curvature
patterns

To understand the impact of curvature on calcium signaling, we
monitored spontaneously evoked temporal calcium dynamics in
multi-curvature neurite networks grown from cortical neurons.
Based on the static calcium patterns shown before, we selected
the two largest growth area devices with 50 μm growth ring
width to observe temporal changes in calcium signaling
compared to an unpatterned control (Fig. 4a). Transient
fluorescent calcium signals were monitored using a single-
wavelength Fluo-4 AM calcium indicator due to its large
dynamic range.34,36 Increasing and decreasing cytosolic calcium
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levels were decomposed using custom software that located
individual somata as regions of interest (ROIs) and categorized
the ROIs based on the curvature range in which they resided
(Fig. S5†). Fig. 4c1–c3 show a representative example of calcium
transient and its rate of change over a 30 s time-window based

on a slow-scanning speed (2 Hz). With increasing curvature,
cortical neurons showed reduced transient calcium signaling
activity, as shown in the calcium raster plots (Fig. 4b) and a
decrease in spike rates of calcium events (Fig. 4d1 and d2) in
contrast to randomized network growth (Fig. 4d3). From the

Fig. 3 Multi-curvature patterns reveal distinct characteristics in static calcium fluorescence in two-week-old circular neurite networks (rat, E18).
(a1–a3) The six distinct multi-curvature micropattern designs. The colored area is the neuronal cell growth area. Red: constant agarose barrier
width = 15 μm. Blue: constant agarose barrier width = 25 μm. (b1–b4) Image processing workflow of raw calcium images. (b1) Original 12-bit false-
color green-fluorescent calcium images (Fluo4 AM). (b2) Down sampled 8-bit gray-scale image after background subtraction. (b3) Automated
circular calcium profiling captures fluorescent intensity profile across one individual micropattern design. (b4) Raw plots of the fluorescent
intensity profiles for every single pattern. (c1) Representative fluorescent image of a patterned and unpatterned (control) cortical neuron culture
(E18, rat, 12 DIV), respectively. (c2) Normalized fluorescent profiles show distinct static calcium characteristics corresponding to panel c1. The
fluorescent signal was normalized over its average (mean intensity). (c3) The mean intensity of the fluorescent signal was plotted over the
curvature. (d1–d3) Normalized fluorescent profiles depending on the six distinct micro-patterns. (e1–e3) Mean fluorescent intensity profile plots
correlated with patterned curvatures.
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raster plot, we then extracted an average calcium event rate of
0.54 spike events per min for the 15 μm barrier width and 0.35
spike events per min for the 25 μm barrier width. In contrast to
the multi-curvature patterns, unpatterned networks had an
average calcium event rate of 0.67 spikes per min. We attribute
the similar spike rate between the unpatterned and the multi-
curvature pattern with the lower agarose barrier width and
potential transport of signaling molecules that can diffuse
through the agarose pores.40 Agarose barriers above 25 μm may

potentially decouple and therefore desynchronize neurite
network patterns, reducing the overall spike rate of calcium
events.

Multi-curvature patterns based on thicker agarose barriers
uncouple Ca2+ event synchronicity

The synchronous activity of spontaneously occurring calcium
events has been shown for cortical neuron aggregates

Fig. 4 Transient calcium signaling in neurite networks grown in multi-curvature patterns is curvature dependent. (a) Schematic highlights the top-
view and side-view of two selected multi-curvature patterns, and the control, with associated representative green fluorescent images (Fluo-4 AM)
and shows primary cortical neurons at 12 DIV (E18, rat). The gray-shaded area is the neuronal cell growth area with agarose barrier width = 15 μm
and 25 μm. (b) Time-varying plots show calcium dynamics based on continuous fluorescence and raster spike plots associated with the selected
patterns from (a). (c1–c3) Fluorescent signal processing for extracting spikes of calcium events, where F is the time-variant fluorescent signal
extracted from calcium imaging, ΔF/Δt is the relative rate of change in cytosolic calcium, and threshold-based calcium events are denoted as
spikes in individual cell bodies (regions of interests = ROIs). k1–k4 labels indicate different curvature rings, with k1 being the smallest curvature. (d1
and d2) Density plots indicate relative spike events per minute for neurons growing in distinct curvatures. (d3) For the unpatterned control, the
same curvature mask was used to extract region-specific calcium events. (e1–e3) Boxplots show the distribution of synchronous calcium spike
activity associated with the distinct curvature regions.
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in vitro.37,45–47 Here, we analyzed if the multi-curvature
pattern also induced spontaneous synchronous calcium
events. We computed the Sørensen–Dice coefficient from the
ROI spike trains at each curvature range to test the
synchronicity of calcium events in the multi-curvature
patterns. A total synchronicity index (SI) for the individually
curved cortical networks then indicates high synchronous
calcium events within the network when more than 25% of
the events occurred in the same time interval (Fig. 4e1–e3
and S5†). Multi-curvature micropatterns with 15 μm agarose
barrier width showed the highest synchronicity in calcium
events and highest variability across the different curvatures
with a mean SI of 0.106 (Fig. 4e1). Multi-curvature patterns
with 25 μm agarose barrier width reduced the mean SI to
0.077; however, more distinct regions of SI's are observed
based on distinct curvature regions suggesting an uncoupling
of calcium event synchronicity between the distinct
curvatures (Fig. 4e2).

In contrast to the multi-curvature patterns, unpatterned
neurite networks had a low mean SI of 0.039 without distinct
regional differences (Fig. 4e3, Mann–Whitney p < 0.05). This
asynchronous signaling effect is also confirmed without
binning the data set by curvature (kn). No significantly
different synchronicity was observed (Fig. 4e3, Mann–

Whitney p < 0.05) between the artificial regions in the
unpatterned network. This observation could mean that the
multi-curvature patterns show more mature neurite network
development than the unpatterned networks.45,48,49 On a side
note, we want to add here that our spike event detection
result from slow scanning calcium imaging (2 Hz). This
approach makes the computation of the synchronicity index
specifically robust; however, our calcium transients may
disguise a high true spike rate of calcium events50 or may
include calcium signal contamination from non-neuronal
cells.6 In summary, micropatterning neuronal growth under
distinct curvatures and with varying hydrogel barrier widths
enables the formation of distinct neuronal network
functionality, which cannot be replicated in the unpatterned
growth of neurite networks.

High curvatures immobilize the transport of mitochondria

Calcium signaling and mitochondrial dynamics are highly
intertwined subcellular processes in neuronal cells.51–53

Here, we test if the modulation of calcium signals through
the multi-curvature growth pattern of neurite networks also
influence mitochondria transport dynamics.53–60 Distinct
mitochondria staining is noted based on the neurite

Fig. 5 Strong curvature bends slow down mitochondria movement. (a) Representative fluorescent images show red fluorescent-labeled
mitochondria (MitoTracker) in primary cortical neuron cultures (12 DIV, E18, rat) in the multi-curvature patterns and the unpatterned culture
environment (control). (b) Time-lapse image sequence presents the mitochondrial movement in two-week-old living neurons. The green
arrowhead points to a particular mitochondrion of interest and its moving position over time extracted from circular (top) and unpatterned =
control (bottom) neural growth. (c) Mean-square displacement (MSD) plots were computed for N individual mitochondria tracks selected from
distinct low (klow), high (khigh) curvature regions, or the unpatterned no curvature influence control region. (d) Center plots of mitochondria
trajectories associated with distinct curvature regions and control. (e) Distribution of average velocity for individual mitochondria associated with
the distinct low and high curvature region versus the unpatterned control condition.
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network growth with and without the multi-curvature
design (Fig. 5a). Using ImageJ TrackMate61 and custom
coded MATLAB scripts,32 mitochondria transport (Fig. 5b)
was characterized based on mean-square displacement
(MSD, Fig. 5c), center plots of trajectories (Fig. 5d), and
average velocity (Fig. 5e). We found that low curvature
values, 0.003 < k < 0.01 μm−1 showed convection-driven
mitochondria transport with a preferred direction
(Fig. 5c and d). Additionally, we see that these lower
curvature ranges reveal two distinct velocity clusters (mean1
= 0.15 μm s−1 and mean2 = 0.77 μm s−1, Fig. 5e). These
velocity ranges are typical for mitochondria docking and
diffusive behavior52,55,58 versus active transport behavior
previously shown between 0.55 μm s−1 and 0.61 μm
s−1.52,58,62 In high-curvature ranges (0.01 < k < 0.2 μm−1),
we observed no active transport behavior. Neurons growing
in unpatterned neurite networks show mitochondria
velocities closely related to previously established
mitochondria velocities in vitro neuronal cultures.52,55,59,63

Similar to Chang et al.,56 mitochondria dynamics in our
experiments show both stationary and high mobile events
(Fig. 5e).

In summary, while both the lower curvature micropatterns
and the unpatterned neurite networks showed stationary
docking and active transport behavior for mitochondria, the
high curvatures immobilize these dynamic events. These
stationary mitochondria dynamics may be attributed to
increased mechanical stress or may be needed to buffer the
local increase of intracellular cytosolic calcium.64

Mechanically shaping the Ca2+ mitochondria axis in neuronal
network growth

In our experimental data, we observed two distinct
patterns of mitochondria dynamics and calcium signaling
events, depending on either high or low arcs in our
multi-curvature patterns. Fig. 6 summarizes our
experimental findings and sets them into the context of a
calcium-mediated mitochondria recruitment hypothesis,
which shows a dominant feature depending on the
strength of curvature range. Under high curvatures (k >

0.01 μm−1), cortical neuronal networks show higher
stationary calcium levels but lower mitochondria transport
velocity and lower spike rate dynamics (Fig. 4d1, d2, 6a
and S6†). In contrast, low curvature ranges promoted high
mitochondria dynamics and lower stationary calcium
signals at slightly higher spike rate dynamics (Fig. 4d1, d2,
6a, and S6†). These results show not only a differential
image in comparison to the control data, but they also
seem to allow us to finetune regulatory events in neurite
networks based on precisely controllable mechanical
growth cues based on curvatures. The interplay of Ca2+

and mitochondria is well recognized with cellular energy
production,53 cell fate regulation,65 and cellular
homeostasis.51 As dynamic organelles, mitochondria are
responsive to both environmental and physiological
cues.58,62 Additionally, it has been proposed that elevated
Ca2+ influx limit mitochondrion mobility.57,66 This reduced
mobility may indicate elevated calcium levels due to

Fig. 6 Confined curvature microenvironments reveal distinct fingerprints based on static and transient Ca2+ signaling events, mean growth area,
and mitochondrial movement dynamics. (a) A four-axis radar chart compares the maximum spike rate, maximum static average calcium intensity,
maximum average mitochondria velocity, and the maximum mean growth area between the curvatures and unpatterned culture conditions. (b)
Schematic of a possible mechano-activated mitochondrial recruitment hypothesis, where (1) mechanosensitive Ca2+ channels are activated due to
strong mechanical bending of the neuronal cell membrane (neurite), which potentially leads to (2) mitochondria recruitment due to a local
levitation of cytosolic Ca2+, which then reduces mitochondria transport velocities.
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higher curvature levels in the patterns. There has also
been an interest in regulating mechanosensitive Ca2+

channels in neurons to elucidate the role
mechanosensitivity plays in Ca2+ signaling and its
downstream processes.67 Calabrese et al. observed that
temporary membrane stretching accelerated the
development of Ca2+ currents, amplifying the net Ca2+

entry.68 This net influx was further confirmed when Kunze
and Tay et al. observed Ca2+ influx during tugging of cell
membrane-localized magnetic nanoparticles.33 Interestingly,
Yi et al. observed both the arrest of mitochondrial
transport during increased cytosolic Ca2+ and a
consecutive increase in mitochondrial calcium,60 which
further substantiated the hypothesis of mitochondrial
recruitment at increased local Ca2+. Hence, we hypothesize
that the higher curvatures exhibited in our device create a
physical environment capable of continuously stretching
mechanosensitive Ca2+ channels, creating locally increased
Ca2+ levels that locally recruit mitochondria for docking
(Fig. 6b and S6†). Therefore, the decrease in
mitochondrial velocity rates can be seen as a downstream
consequence of increased internal Ca2+ concentrations at
greater curvatures.

Conclusions

In summary, we have developed a reproducible
micropatterning method to design multi-curvature neuronal
network growth in grooves of agarose hydrogels. Using these
multi-curved neurite networks, we observed distinct calcium
signaling and mitochondria transport events. We revealed
that high curvatures (k > 0.01 μm−1) favor dynamic calcium
and transport events rather than stationary events in
comparison to low curvature ranges (k < 0.01 μm−1). We also
demonstrated that incorporating soft-gel microchannels into
neuronal cell assays is a versatile, low-cost, and highly
reproducible method to control neurite network growth
under confined curvatures. Broadly, our multi-curvature-
based soft-embossing of micropatterns allows for rapid and
relatively easy reproducibility in studying confined curvatures
associated with mechanical cues imposed on neuronal cell
growth in the highly folded landscape of the human cerebral
cortex. Although projected to a flat surface, where neuronal
cells grow, the quasi three-dimensional environment due to
the hydrogel barriers makes it specifically compatible with
standard live-cell fluorescent microscopy techniques.
Furthermore, the micropatterning approach makes multi-
curvature studies accessible for large-scale pharmaceutical
testing and neurobiology studies. Our highly parallelized
design enables automated image acquisition, parallelized
batch processing, scaling up experimental batch size while
being compatible with standard cell culture assays. Beyond
calcium signaling and mitochondria dynamics, our multi-
curvature patterns can bring further insights into functional
changes imposed to neuronal networks through the cortical
folded landscape.
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